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Abstract
 – To reach maximum sensitivity, any method

used to search for orphan sources must be insensitive to lo-
cal variations of the background. Using imaging and non-
imaging techniques, we analyzed the same data acquired by a
search instrument deployed as a large-area, coded-mask
imager. Data from many passes past a 1 mCi source at 65 m
from the instrument were used to construct a model of the
instrument response. We then used the model to “hide” the
source in data taken in a light urban environment. We com-
pared the success of detecting the hidden sources using imag-
ing coded-mask methods, pseudo-imaging based on a zero-
area matched filter, and non-imaging using simple thresh-
olding. The results clearly indicate the superiority of imag-
ing with the coded-mask techniques returning the best re-
sults.

I. INTRODUCTION

There is currently a great deal of interest in the detection

of orphan sources [1, 2]. Such sources can be considered as

any radiation source that is not where it belongs, either by

accident or malicious intent. One approach to finding or-

phan sources is to sweep a suspect region for the source

with radiation detectors. Such a wide area search for nuclear

materials preferably finds all such materials and makes no

false alarms. Unfortunately, the background fluctuations in

a search are usually so large that one must either use a high

threshold to avoid false alarms, thereby missing faint

sources, or use a low threshold and suffer many false

alarms. It is obvious that the raw rate of events in a detector

makes a poor distinction between sources and background

variations [3, 4]. Using coded-aperture masks, the Large

Area Imager (LAI) [4] encodes the data coming into a mo-

bile detector so that background fluctuations can be sup-

pressed and the signature of point sources, even those at a

distance, can be properly flagged.
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Two questions remain: first, are there methods of proc-

essing non-imaged data that reveal point sources against the

fluctuations, and second, if such methods exist, how does

their sensitivity compare with imaging? We have made a

direct comparison between imaging and non-imaging tech-

niques by analyzing the same data from the LAI, first as an

imager and then as a non-imager using both a simple

threshold and a zero-area matched filter.

II. INSTRUMENT

The Livermore Large Area Imager is a 3 by 19 array of

10 cm by 10 cm by 10 cm NaI(Tl) detectors located behind

a coded-aperture mask. It is described in detail in [4]. For

these measurements the system was mounted in the back of

a truck (Fig. 1) and was configured to observe the curb side

of the street. It uses custom electronics to acquire list-mode

data from each of the detectors while the system is in mo-

tion. Included in the data stream are “events” from a Dop-

pler-radar-based fifth-wheel that indicate the linear location

of the imager from a fixed starting point. Timestamp events

are also included at one millisecond intervals to allow one

to correct for dwell time at a given location.

The instrument generates one-dimensional images of the

radiation field observed at any given location. Based on

data from the fifth-wheel, the images are mapped to overall

world maps that can be used to find the location of sources.

Parallax effects are used to generate world-maps for each of

ten different 10-meter deep distance bins set on the central

5-meter ranges from the imager (i.e. 5 m, 15 m, 25 m, etc.)

Fig. 1. The Large Area Imager mounted in the back of a rental
truck. The mask (A) projects a shadow onto the pixilated detector
(B). From the shadow and the known mask pattern, 1-d images are
combined with the truck location and parallax effects to generate 2-
d images as shown in Fig. 2.



The resulting 2-d plot (Fig. 2) reveals the location of point

sources while nulling large-scale background variations.

The data are normalized to the dwell time at a given lo-

cation and counting statistics errors are propagated through

the analysis routine as explained in [4]. The data is also

analyzed as the counts per meter obtained without using the

imaging analysis. This data is the same as would be ob-

tained with a source of half the intensity if a normal (no

mask) detector were used since the mask blocks 50% of the

radiation from the source. The results of the imaging analy-

sis centered on 65 meters are compared with the counts per

meter data analyzed using pseudo-imaging and a threshold

approach as described below.

III. METHODOLOGY

A. Real and Simulated Data

Even if one has enough counts in a detector from an or-

phan source to make a statistical detection, one must still

deal with background variations as a function of location.

Thus, to determine the efficacy of a detection system, it is

insufficient to make many trials at one location and deter-

mine if the source is found. Rather, one should hide a

source in many locations and see how many times one

finds it, misses it, and gets false alarms while looking for

it; however, restrictions on using sources in public make

this approach difficult.

To overcome this problem, we took high fidelity data on

a source at LLNL, generated the system response, and then

used this to obtain a “model-source” that could be located

anywhere in no-source data sets taken in the world-at-large.

For the model source, data were acquired by placing a 1

mCi 
137

Cs source 65 m from a road and driving the LAI

past it at 16 km/h. A total of 20 data sets were collected,

10 with the source present and 10 without.

To better reject artifacts in coded aperture images, each

data set was acquired in two integrations, one with a mask

and one with an anti-mask configuration. To swap between

the two configurations, the open and closed elements of the

mask are interchanged. The LAI was designed to make this

interchange easy. (A new instrument currently under con-

struction will use two inline imagers to obtain the two data

sets in a single pass.) In addition to removing unwanted

artifacts from the images, the net effect of using two passes

is that it doubles the effective detector area of the imager

from 0.57 m
2
 to 1.14 m

2
.

For the analysis, only data around the 662 keV peak of

the 
137

Ce source is used. The detectors are all calibrated to

the same energy scale, and an energy window from 590 to

730 keV was selected. For the world-at-large data, a total of

about 16 minutes of data were collected in the Livermore

area at the same velocity and with the same energy cuts.

Both a mask and an anti-mask pass were used as well. The

model source was then hidden at different locations in these

data.

B.  Receiver Operating Characteristic  Curves

We use Receiver Operating Characteristic (ROC) curves

to determine performance. A ROC curve plots the probabil-

ity of detection as a function of the probability of a false

alarm. The two probabilities are generated by varying the

detection threshold and counting the number of detections

at source locations and the number of false alarms at non-

source locations. The two parameters are then plotted

against each other, eliminating the common threshold. A

poor detector gives a diagonal line from (0,0) to (1,1). A

perfect detector gives a right angle plot going from (0,0) to

(0,1) and then to (1,1), i.e. all detections are made without

a single false alarm.

IV. IMAGING MODE

A. Imaged Source Model

The imaged source model is taken from the LAI world-

image at 65 m (Fig. 2.) To include possible effects of im-

aging in the model, the image itself is not used. Rather, the

model is generated and it is saved before the imaging step

in the analysis. This means that we save the detector map

and associated counting statistics data for each of the pixels

in the image at 65 m. The summed, no-source, detector

maps are subtracted from the summed, source, detector

maps at each location before an image conversion is nor-

mally made. This difference is saved to disk.

To add the model to a data set, the model detector maps

are scaled for source strength (0.1 for a 1 mCi source) and

then added to the data at each location of the data set for a

Fig. 2. The imager “world-view” 2-d image for half of the source data
used to generate the model. The source is detected at nearly 11 sigma.
Subsequent “image” data uses only the image results centered at 65 m
from the detector.
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selected source location before it is imaged. The source

adds to the data for about 75 m on either side of the central

location. The imager field of view spreads this another fac-

tor of two, as shown in Fig. 3.

B. Model Performance

The imager source model is quite good, we compared an

actual source run with a no-source run that has the model

added, and found the model has slightly higher counting

statistics noise since we do not use a “noiseless” fit. Also,

no adjustment has been made to shift the starting points of

different runs to optimize the overlap. Finally, the effect of

trees in the real data (see below) remains in the model,

making the detection weaker than for an unobstructed

source.

C. Imager Detection and False Alarms

Ultimately we wish to determine the probabilities of de-

tection and false alarm as a function of pixel height above

zero as the threshold, computed in units of standard devia-

tion (sigma), is varied for the imaged data. Curves of these

items as a function of the confidence level (sigma) are

shown in Fig. 4.

The probability of false alarm is generated from a total of

644 no-source pixels examined in the world-at-large data.

This represents 16.8 minutes of driving time at 16 km/h.

To obtain the probability of detection, the appropriately

scaled model source is added to the data from the world-at-

large. To keep the model source locations statistically inde-

pendent, the model is inserted into these data every 75 m

for a total of 42 locations. Results from these pixels are

used to generate the probability of detection. The curve for

a 1.0 mCi source is shown in Fig. 4. Values of 0.5 mCi

and 1.5 mCi were also run.

D. Imager ROC Curves

ROC curves for the three model source strengths gener-

ated for the imager are shown in Fig. 5. Note that the same

probability of false alarm data is used for each of the differ-

ent strength sources to generate the ROC curves. The per-

formance at 1.5 mCi is perfect, indicating that more trials

are needed to properly map the response. The 1.0 mCi re-

sult is only slightly worse.

V. NON-IMAGING MODE

A. Distant Source Flux Fitting Function and Matched
Filter

The intensity from a point source to a detector at dis-

tance d and detector inclination angle !, goes as

! 

I(d;",#)$
1

d
2
e
%d /"

cos#

where " is the mean free path in the atmosphere.

The perceived intensity for the detector at location x on a
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To account for this shape factor and its variation with b

in analyzing non-imaged data, we selected the zero area

matched filter (ZAMF) method. A ZAMF is constructed by

making a kernel the exact shape of the item you are looking

for and then subtracting its total area. The subtraction gives

it the zero-area property. This means that, when convolved

with the data, the kernel adds no net counts, reducing the

contribution from all spatial variations that do no match the

model. The ZAMF is then convolved with the data and the

result gives a measure of the intensity of any source it

matches at each point along the intensity path [5].

If no sources are present, the values of the convolution

should be normally distributed. If a source that matches the

filter is present, then the value of the convolution at the
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point corresponding to the center of the source should ex-

ceed the expected fluctuations in the convolution if the

source is bright enough. This gives us a distance-specific

method to optimize the search for sources in non-imaged

data. Since the ZAMF varies with distance to the source, it

can be used to construct 2-d images similar to that shown

in Fig. 2 from the full image analysis. For this reason this

approach is considered a pseudo-imaging technique.

B. Non-Imaging Model Extraction

Fig. 6 shows the non-imaged data from the LAI (filled

and unfilled diamonds). The data is the sum of all 10

source data runs minus the sum of the 10 no-source data

runs. The source is located approximately at -70 m along

the path.

The peak shows a few of the issues encountered with

search data. First, the data are quite noisy. Second, despite

our “ideal” source placement, it turns out that there were

two one-meter thick trees within 5 meters of the source.

These shielded the source from the road and are evident as

notches in the peak. To remove these effects from the

model, we made a 5-parameter fit that takes into account

the distance of closest approach, the geometric detector area,

and atmospheric attenuation, as well as the peak height,

center and baseline offset. We exclude the data obviously

behind the trees (the unfilled dots) to obtain a fit (solid

line) that was in good agreement with the known parame-

ters, i.e. the location was  ± 3 m from measured, the dis-

tance of closest approach was  ± 9 m from truth, and the

atmospheric attenuation length was 131 ± 49 m, which

compares favorably with the expected 105 m.

C. Sample Non-Imaged Data

We acquired about five kilometers of no-source back-

ground (world-at-large) data. The typical count rate in our

detector between 590 and 730 keV was 200 counts per me-

ter at 16 km./h. The “real” fluctuations along a path, which

correspond to background emission, shielding, and geome-

try, are about ±20%. In Fig. 7, the black line is one section

of such data. The red line is the same data with the noise-

less model inserted at the location of zero meters for a 1

mCi source. This peak is hidden both by the noise and the

local fluctuations and would be impossible to find without

a priori information on the background.

D. Sample Matched Filter Processed Data

Fig. 8 shows the result of applying the ZAMF for a

source at 65 m to the raw data in Fig. 7. The ZAMF is

based on the theoretical response expected for a source at 65

m, not from the noiseless fit used to make the model. This

means the ZAMF is slightly different from the inserted

shape. Nevertheless, a much larger excursion is seen for the

plot with the inserted source (red) than for that with no

source (black).

E. Non-Imager Detection and False Alarms

Because of local variations, the raw data are not distrib-

uted normally, and so it is difficult to establish a useful

value of confidence level for alarming. However, for ROC

analysis purposes, the distribution of counts without hid-

den sources must be compared to the distribution with hid-

den sources. Further, we would like to see that the matched

filter ameliorates this unfortunate sensitivity to local varia-

tions and more closely yields a normal distribution so that

standard statistical techniques may be used.

Fig. 9 shows the distribution of “detections” above a

threshold for world-at-large data with and without the

model peak. The left figure is for the raw data, the right

figure is for matched-filter-processed data. Both plots are

Fig 8. Filtered world-at-large data. The red line is the same data with
the model source added and then filtered.

Fig. 6. Source + background minus background, and model fit and re-
siduals.

Fig 7. One-fifth of the world-at-large data in raw counts. The red line is
the same data with the model source added at zero meters along the
track.



for 1 mCi sources. Notice how a low threshold means

many false alarms, particularly in the raw data, while a high

threshold reduces the false alarm rate, but also misses more

sources.

F. ROC Curves For Raw Data and Processed Data

Now we can compute the ROC curves for the non-

imaged data. The reported source strengths are compensated

for the 50% reduction in signal due to the mask. This en-

ables us to make a quantitative comparison for the value of

imaging based on the important parameter of how much

time and energy are expended chasing alarms as compared

with the success rate.

Fig. 10 shows the ROC curves for the non-imaged data.

The “raw counts” ROC (left) shows that at an acceptable

detection rate—say, above 99%—even for a 1.5 mCi source

we would get a false alarm indication 4 out of every 10

meters.

The ZAMF-processed data is much better. It suggests

that a non-imager can be used to detect and locate a few

mCi point source at several tens of meters. However, at 65

m we still have a 15% false alarm rate for 99% detection of

a 1 mCi source.

VI. DISCUSSION

A practical interpretation of the ROC curves is that they

describe how often one must suffer false alarms in order to

successfully detect an orphan source of a given intensity at

a given distance. Because we only have 5 km of world-at-

large data, we are limited in our knowledge of false alarm

rates that happen fewer than once every 20 min. at 16 km/h.

This would be unacceptable in scenarios where each false

alarm requires 20 minutes of follow-up but might be ac-

ceptable if each alarm took only one minute. Thus, to fully

interpret the implications of a given ROC curve, the opera-

tional scenario must be well defined. Also, since real detec-

tions are rare, it would clearly help to have more data so

one could better map the upper left corner of the ROC

curves.

For the non-imaging modes, the false alarm rate is com-

puted as the fraction of total distance traveled above thresh-

old. The computation is more properly performed by de-

termining the number of times per distance traveled that the

measured intensity value crosses the threshold. The imag-

ing ROC curve more correctly takes care of this problem

because its response is mapped to a single pixel . For the

non-imaging methods, we plan to apply a sequential prob-

ability ratio test to derive ROC curves that can be more

directly compared with the imaging result.

This analysis was limited to the 1-d map at a fixed 65-m

distance from the road. For both the imaging mode and the

ZAMF, a 2-d map may be computed, displaying the sigma

value above background for a number of different ranges.

However, the parameter returned by the ZAMF that we pre-

sent here is not normalized to allow comparison of true

sigma among the computed ranges.

VII. CONCLUSION

The results indicate that the zero area matched filter im-

proves search performance for distant point sources beyond

that possible with normal, non-imaged data. However, the

same detector used in mask/anti-mask imaging mode re-

duced the false alarm rate by a factor of at least ten for 99%

detection of a 1.5 mCi source at 65 meters. The superiority

of the imager is unmistakable despite the “imperfect” point

source model used.
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